A discriminative approach to frame-by-frame head pose tracking

TitleA discriminative approach to frame-by-frame head pose tracking
Publication TypeConference Paper
Year of Publication2008
AuthorsWhitehill, J, Movellan, JR
Conference Name8th IEEE International Conference on Automatic Face Gesture Recognition, 2008. FG '08
Date Published09/2008
Conference LocationAmsterdam
ISBN Number978-1-4244-2153-4
Accession Number10571793
Keywordsaccuracy drift, continuous video sequence, controlled illumination condition, discriminative approach, face detection, face recognition, facial appearance, frame-by-frame head pose tracking, Humans, Image analysis, Image databases, Laboratories, Lighting, Magnetic heads, mean square error methods, pose estimation, Robustness, root-mean-square error tracking, System testing, Video sequences

We present a discriminative approach to frame-by-frame head pose tracking that is robust to a wide range of illuminations and facial appearances and that is inherently immune to accuracy drift. Most previous research on head pose tracking has been validated on test datasets spanning only a small (< 20) subjects under controlled illumination conditions on continuous video sequences. In contrast, the system presented in this paper was both trained and tested on a much larger database, GENKI, spanning tens of thousands of different subjects, illuminations, and geographical locations from images on the Web. Our pose estimator achieves accuracy of 5.82deg, 5.65deg, and 2.96deg root-mean-square (RMS) error for yaw, pitch, and roll, respectively. A set of 4000 images from this dataset, labeled for pose, was collected and released for use by the research community.